La energía solar fotovoltaica. 


La energía solar fotovoltaica es unafuente de energía que produceelectricidad de origen renovable,obtenida directamente a partir de laradiación solar mediante un dispositivosemiconductor denominado célula fotovoltaica,o bien mediante una deposición de metales sobre un sustrato denominada célula solar de película fina.

Este tipo de energía se usa principalmente para producir electricidad a gran escala a través deredes de distribución, aunque también permite alimentar innumerables aplicaciones y aparatos autónomos, abastecer refugios de montaña o viviendas aisladas de la red eléctrica. Debido a la creciente demanda deenergías renovables, la fabricación de células solares e instalaciones fotovoltaicas ha avanzado considerablemente en los últimos años.Comenzaron a producirse en masa a partir del año 2000, cuando medioambientalistas alemanes y la organización Eurosolar obtuvo financiación para la creación de diez millones de tejados solares.

Programas de incentivos económicos, primero, y posteriormente sistemas deautoconsumo fotovoltaico y balance neto sin subsidios, han apoyado la instalación de la fotovoltaica en un gran número de países.Gracias a ello la energía solar fotovoltaica se ha convertido en la tercera fuente de energía renovable más importante en términos de capacidad instalada a nivel global, después de las energías hidroeléctrica y eólica. A principios de 2017, se estima que hay instalados en todo el mundo cerca de 300 GW de potencia fotovoltaica.

La energía fotovoltaica no emite ningún tipo de polución durante su funcionamiento, contribuyendo a evitar la emisión de gases de efecto invernadero.Su principal desventaja consiste en que su producción depende de la radiación solar directa, por lo que si la célula no se encuentra alineada perpendicularmente al Sol se pierde entre un 10-25% de la energía incidente. Debido a ello, en las plantas de conexión a red se ha popularizado el uso deseguidores solares para maximizar la producción de energía. La producción se ve afectada asimismo por las condiciones meteorológicas adversas, como la falta de sol, nubes o la suciedad que se deposita sobre los paneles. Esto implica que para garantizar el suministro eléctrico es necesario complementar esta energía con otras fuentes de energía gestionables como las centrales basadas en la quema de combustibles fósiles, la energía hidroeléctrica o laenergía nuclear.

Gracias a los avances tecnológicos, la sofisticación y la economía de escala, el coste de la energía solar fotovoltaica se ha reducido de forma constante desde que se fabricaron las primeras células solares comerciales,aumentando a su vez la eficiencia, y logrando que su coste medio de generación eléctrica sea ya competitivo con las fuentes de energía convencionales en un creciente número de regiones geográficas, alcanzando la paridad de red.Actualmente el coste de la electricidad producida en instalaciones solares se sitúa entre 0,05-0,10 $/kWh en EuropaChinaIndiaSudáfrica yEstados Unidos. En 2015, se alcanzaron nuevos récords en proyectos de Emiratos Árabes Unidos(0,0584 $/kWh), Perú (0,048 $/kWh) yMéxico (0,048 $/kWh). En mayo de 2016, una subasta solar en Dubáialcanzó un precio de 0,03 $/kWh.

Breve historia :

El término “fotovoltaico” se comenzó a usar en Reino Unido en el año 1849.Proviene del griego φώς: phos, que significa “luz”, y de -voltaico, que proviene del ámbito de la electricidad, en honor al físico italiano Alejandro Volta.

El efecto fotovoltaico fue reconocido por primera vez unos diez años antes, en 1839, por el físico francés Alexandre-Edmond Becquerel,pero la primera célula solar no se fabricó hasta 1883. Su creador fue Charles Fritts, quien recubrió una muestra de seleniosemiconductor con pan de oro para formar la unión. Este primitivo dispositivo presentaba una eficiencia menor del 1 %, pero demostró de forma práctica que, efectivamente, producir electricidad con luz era posible.Los estudios realizados en el siglo XIX porMichael FaradayJames Clerk Maxwell,Nikola Tesla y Heinrich Hertz sobreinducción electromagnéticafuerzas eléctricas y ondas electromagnéticas, y sobre todo los de Albert Einstein en 1905, proporcionaron la base teórica alefecto fotoeléctrico, que es el fundamento de la conversión de energía solar a electricidad.

Principio de funcionamientoCuando un semiconductor dopado se expone a radiación electromagnética, se desprende del mismo un fotón, que golpea a un electrón y lo arranca, creando un hueco en el átomo. Normalmente, el electrón encuentra rápidamente otro hueco para volver a llenarlo, y la energía proporcionada por el fotón, por tanto, se disipa en forma de calor. El principio de una célula fotovoltaica es obligar a los electrones y a los huecos a avanzar hacia el lado opuesto del material en lugar de simplemente recombinarse en él: así, se producirá una diferencia de potencial y por lo tanto tensión entre las dos partes del material, como ocurre en una pila.

Para ello, se crea un campo eléctricopermanente, a través de una unión pn, entre dos capas dopadas respectivamente, p y n. En las células de silicio, que son mayoritariamente utilizadas, se encuentran por tanto:

  • La capa superior de la celda, que se compone de silicio dopado de tipo n.En esta capa, hay un número de electrones libres mayor que en una capa de silicio puro, de ahí el nombre del dopaje n, negativo. El material permanece eléctricamente neutro, ya que tanto los átomos de silicio como los del material dopante son neutros: pero la red cristalina tiene globalmente una mayor presencia de electrones que en una red de silicio puro.
  • La capa inferior de la celda, que se compone de silicio dopado de tipo p. Esta capa tiene por lo tanto una cantidad media de electrones libres menor que una capa de silicio puro. Los electrones están ligados a la red cristalina que, en consecuencia, es eléctricamente neutra pero presentahuecos, positivos (p). La conducción eléctrica está asegurada por estos portadores de carga, que se desplazan por todo el material.

En el momento de la creación de la unión pn, los electrones libres de la capa n entran instantáneamente en la capa p y se recombinan con los huecos en la región p. Existirá así durante toda la vida de la unión, una carga positiva en la región n a lo largo de la unión (porque faltan electrones) y una carga negativaen la región en p a lo largo de la unión (porque los huecos han desaparecido); el conjunto forma la «Zona de Carga de Espacio» (ZCE) y existe un campo eléctrico entre las dos, de n hacia p. Este campo eléctrico hace de la ZCE undiodo, que solo permite el flujo de corriente en una dirección: los electrones pueden moverse de la región p a la n, pero no en la dirección opuesta y por el contrario los huecos no pasan más que de n hacia p.

En funcionamiento, cuando un fotón arranca un electrón a la matriz, creando un electrón libre y un hueco, bajo el efecto de este campo eléctrico cada uno va en dirección opuesta: los electrones se acumulan en la región n (para convertirse en polo negativo), mientras que los huecos se acumulan en la región dopada p (que se convierte en el polo positivo). Este fenómeno es más eficaz en la ZCE, donde casi no hay portadores de carga (electrones ohuecos), ya que son anulados, o en la cercanía inmediata a la ZCE: cuando un fotón crea un par electrón-hueco, se separaron y es improbable que encuentren a su opuesto, pero si la creación tiene lugar en un sitio más alejado de la unión, el electrón (convertido en hueco) mantiene una gran oportunidad para recombinarse antes de llegar a la zona n. Pero la ZCE es necesariamente muy delgada, así que no es útil dar un gran espesor a la célula.Efectivamente, el grosor de la capa n es muy pequeño, ya que esta capa sólo se necesita básicamente para crear la ZCE que hace funcionar la célula. En cambio, el grosor de la capa p es mayor: depende de un compromiso entre la necesidad de minimizar las recombinaciones electrón-hueco, y por el contrario permitir la captación del mayor número de fotones posible, para lo que se requiere cierto mínimo espesor.

En resumen, una célula fotovoltaica es el equivalente de un generador de energía a la que se ha añadido un diodo. Para lograr una célula solar práctica, además es preciso añadir contactos eléctricos (que permitan extraer la energía generada), una capa que proteja la célula pero deje pasar la luz, una capaantireflectante para garantizar la correcta absorción de los fotones, y otros elementos que aumenten la eficiencia del misma.

Primera célula solar moderna

El ingeniero estadounidense Russell Ohlpatentó la célula solar moderna en el año 1946, aunque otros investigadores habían avanzado en su desarrollado con anterioridad: el físicosueco Sven Ason Berglund había patentado en 1914 un método que trataba de incrementar la capacidad de las células fotosensibles, mientras que en 1931, el ingeniero alemán Bruno Lange había desarrollado una fotocélula usando seleniuro de plata en lugar deóxido de cobre.

La era moderna de la tecnología solar no llegó hasta el año 1954, cuando los investigadores estadounidenses Gerald Pearson, Calvin S. Fuller y Daryl Chapin, de los Laboratorios Bell,descubrieron de manera accidental que los semiconductores de silicio dopado con ciertas impurezas eran muy sensibles a la luz. Estos avances contribuyeron a la fabricación de la primera célula solar comercial. Emplearon una unión difusa de silicio p–n, con una conversión de la energía solar de aproximadamente 6 %, un logro comparado con las células de selenio que difícilmente alcanzaban el 0,5 %.

Posteriormente el estadounidense Les Hoffman, presidente de la compañíaHoffman Electronics, a través de su división de semiconductores fue uno de los pioneros en la fabricación y producción a gran escala de células solares. Entre 1954 y 1960, Hoffman logró mejorar la eficiencia de las células fotovoltaicas hasta el 14 %, reduciendo los costes de fabricación para conseguir un producto que pudiera ser comercializado.

Primeras aplicaciones: energía solar espacial

Al principio, las células fotovoltaicas se emplearon de forma minoritaria para alimentar eléctricamente juguetes y en otros usos menores, dado que el coste de producción de electricidad mediante estas células primitivas era demasiado elevado: en términos relativos, una célula que produjera un vatio de energía mediante luz solar podía costar 250dólares, en comparación con los 2 o 3 dólares que costaba un vatio procedente de una central termoeléctrica de carbón.

Las células fotovoltaicas fueron rescatadas del olvido gracias a lacarrera espacial y a la sugerencia de utilizarlas en uno de los primeros satélites puestos en órbita alrededor de la Tierra. La Unión Soviética lanzó su primer satélite espacial en el año 1957, y Estados Unidos le seguiría un año después. La primera nave espacial que usó paneles solares fue el satélite norteamericano Vanguard 1, lanzado en marzo de 1958 (hoy en día el satélite más antiguo aún en órbita). En el diseño de éste se usaron células solares creadas por Peter Iles en un esfuerzo encabezado por la compañía Hoffman Electronics.El sistema fotovoltaico le permitió seguir transmitiendo durante siete años mientras que las baterías químicas se agotaron en sólo 20 días.

En 1959, Estados Unidos lanzó elExplorer 6. Este satélite llevaba instalada una serie de módulos solares, soportados en unas estructuras externas similares a unas alas, formados por 9600 células solares de la empresa Hoffman. Este tipo de dispositivos se convirtió posteriormente en una característica común de muchos satélites. Había cierto escepticismo inicial sobre el funcionamiento del sistema, pero en la práctica las células solares demostraron ser un gran éxito, y pronto se incorporaron al diseño de nuevos satélites.

Pocos años después, en 1962, el Telstarse convirtió en el primer satélite de comunicaciones equipado con células solares, capaces de proporcionar unapotencia de 14 W.Este hito generó un gran interés en la producción y lanzamiento de satélitesgeoestacionarios para el desarrollo de las comunicaciones, en los que la energía provendría de un dispositivo de captación de la luz solar. Fue un desarrollo crucial que estimuló la investigación por parte de algunos gobiernos y que impulsó la mejora de los paneles fotovoltaicos.Gradualmente, la industria espacial se decantó por el uso de células solares dearseniuro de galio (GaAs), debido a su mayor eficiencia frente a las células de silicio. En 1970 la primera célula solar con heteroestructura de arseniuro de galio y altamente eficiente se desarrolló en la Unión Soviética por Zhorés Alfiórovy su equipo de investigación.

A partir de 1971, las estaciones espaciales soviéticas del programa Salyut fueron los primeros complejos orbitales tripulados en obtener su energía a partir de células solares, acopladas en estructuras a los laterales del módulo orbital,al igual que la estación norteamericana Skylab, pocos años después.

En la década de 1970, tras la primeracrisis del petróleo, el Departamento de Energía de los Estados Unidos y la agencia espacial NASA iniciaron el estudio del concepto de energía solar en el espacio, que ambicionaba el abastecimiento energético terrestre mediante satélites espaciales. En 1979 propusieron una flota de satélites en órbita geoestacionaria, cada uno de los cuales mediría 5 x 10 km y produciría entre 5 y 10 GW. La construcción implicaba la creación de una gran factoría espacial donde trabajarían continuamente cientos de astronautas. Este gigantismo era típico de una época en la que se proyectaba la creación de grandes ciudades espaciales. Dejando aparte las dificultades técnicas, la propuesta fue desechada en 1981 por implicar un coste disparatado. A mediados de la década de 1980, con el petróleo de nuevo en precios bajos, el programa fue cancelado.

No obstante, las aplicaciones fotovoltaicas en los satélites espaciales continuaron su desarrollo. La producción de equipos de deposición química de metales por vapores orgánicos o MOCVD (Metal Organic Chemical Vapor Deposition)no se desarrolló hasta la década de 1980, limitando la capacidad de las compañías en la manufactura de células solares de arseniuro de galio. La primera compañía que manufacturó paneles solares en cantidades industriales, a partir de uniones simples de GaAs, con una eficiencia del 17 % en AM0 (Air Mass Zero), fue la norteamericana Applied Solar Energy Corporation (ASEC). Las células de doble unión comenzaron su producción en cantidades industriales por ASEC en 1989, de manera accidental, como consecuencia de un cambio del GaAs sobre los sustratos de GaAs, a GaAs sobre sustratos de germanio.

La tecnología fotovoltaica, si bien no es la única que se utiliza, sigue predominando a principios del siglo XXIen los satélites de órbita terrestre.Por ejemplo, las sondas Magallanes,Mars Global Surveyor y Mars Observer, de la NASA, usaron paneles fotovoltaicos,así como elTelescopio espacial Hubble,en órbita alrededor de la Tierra. La Estación Espacial Internacional, también en órbita terrestre, está dotada de grandes sistemas fotovoltaicos que alimentan todo el complejo espacial,al igual que en su día la estación espacial Mir.Otros vehículos espaciales que utilizan la energía fotovoltaica para abastecerse son la sonda Mars Reconnaissance Orbiter,Spirit yOpportunity, los robots de la NASA enMarte.

La nave Rosetta, lanzada en 2004 en órbita hacia un cometa tan lejano delSol como el planeta Júpiter (5,25 AU), dispone también de paneles solares;anteriormente, el uso más lejano de la energía solar espacial había sido el de la sonda Stardust,a 2 AU. La energía fotovoltaica se ha empleado también con éxito en la misión europea no tripulada a la LunaSMART-1, proporcionando energía a su propulsor de efecto Hall.La sonda espacialJuno será la primera misión a Júpiter en usar paneles fotovoltaicos en lugar de un generador termoeléctrico de radioisótopos, tradicionalmente usados en las misiones espaciales al exterior del Sistema Solar.Actualmente se está estudiando el potencial de la fotovoltaica para equipar las naves espaciales que orbiten más allá de Júpiter.

Primeras aplicaciones terrestres

Desde su aparición en la industria aeroespacial, donde se ha convertido en el medio más fiable para suministrar energía eléctrica en los vehículos espaciales, la energía solar fotovoltaica ha desarrollado un gran número de aplicaciones terrestres. La primera instalación comercial de este tipo se realizó en 1966, en el faro de la isla Ogami (Japón), permitiendo sustituir el uso de gas de antorcha por una fuente eléctrica renovable y autosuficiente. Se trató del primer faro del mundo alimentado mediante energía solar fotovoltaica, y fue crucial para demostrar la viabilidad y el potencial de esta fuente de energía.

Las mejoras se produjeron de forma lenta durante las siguientes dos décadas, y el único uso generalizado se produjo en las aplicaciones espaciales, en las que su relación potencia a peso era mayor que la de cualquier otra tecnología competidora. Sin embargo, este éxito también fue la razón de su lento crecimiento: el mercado aeroespacial estaba dispuesto a pagar cualquier precio para obtener las mejores células posibles, por lo que no había ninguna razón para invertir en soluciones de menor costo si esto reducía la eficiencia. En su lugar, el precio de las células era determinado en gran medida por la industria de los semiconductores; su migración hacia la tecnología de circuitos integrados en la década de 1960 dio lugar a la disponibilidad de lingotes más grandes a precios relativamente inferiores. Al caer su precio, el precio de las células fotovoltaicas resultantes descendió en igual medida. Sin embargo, la reducción de costes asociada a esta creciente popularización de la energía fotovoltaica fue limitada, y en 1970 el coste de las células solares todavía se estimaba en 100 dólares por vatio ($/Wp).

Reducción de precios

Reducción de preciosEditar

A finales de la década de 1960, el químico industrial estadounidense Elliot Berman estaba investigando un nuevo método para la producción de la materia prima de silicio a partir de un proceso en cinta. Sin embargo, encontró escaso interés en su proyecto y no pudo obtener la financiación necesaria para su desarrollo. Más tarde, en un encuentro casual, fue presentado a un equipo de la compañía petrolera Exxonque estaban buscando proyectos estratégicos a 30 años vista. El grupo había llegado a la conclusión de que laenergía eléctrica sería mucho más costosa en el año 2000, y consideraba que este aumento de precio haría más atractivas a las nuevas fuentes de energía alternativas, siendo la energía solar la más interesante entre estas. En 1969, Berman se unió al laboratorio de Exxon en Linden, Nueva Jersey, denominado Solar Power Corporation(SPC).

Su esfuerzo fue dirigido en primer lugar a analizar el mercado potencial para identificar los posibles usos que existían para este nuevo producto, y rápidamente descubrió que si el coste por vatio se redujera desde los 100 $/Wp a cerca de 20 $/Wp surgiría una importante demanda. Consciente de que el concepto del “silicio en cinta” podría tardar años en desarrollarse, el equipo comenzó a buscar maneras de reducir el precio a 20 $/Wp usando materiales existentes. La constatación de que las células existentes se basaban en el proceso estándar de fabricación de semiconductores supuso un primer avance, incluso aunque no se tratara de un material ideal. El proceso comenzaba con la formación de un lingote de silicio, que se cortaba transversalmente en discos llamados obleas. Posteriormente se realizaba el pulido de las obleas y, a continuación, para su uso como células, se dotaba de un recubrimiento con una capa anti reflectante. Berman se dio cuenta de que las obleas de corte basto ya tenían de por sí una superficie frontal anti reflectante perfectamente válida, y mediante la impresión de los electrodosdirectamente sobre esta superficie, se eliminaron dos pasos importantes en el proceso de fabricación de células.

Su equipo también exploró otras formas de mejorar el montaje de las células en matrices, eliminando los costosos materiales y el cableado manual utilizado hasta entonces en aplicaciones espaciales. Su solución consistió en utilizar circuitos impresosen la parte posterior, plástico acrílico en la parte frontal, y pegamento de siliconaentre ambos, embutiendo las células. Berman se dio cuenta de que el silicio ya existente en el mercado ya era “suficientemente bueno” para su uso en células solares. Las pequeñas imperfecciones que podían arruinar un lingote de silicio (o una oblea individual) para su uso en electrónica, tendrían poco efecto en aplicaciones solares. Las células fotovoltaicas podían fabricarse a partir del material desechado por el mercado de la electrónica, lo que traería como consecuencia una gran mejora de su precio.

Poniendo en práctica todos estos cambios, la empresa comenzó a comprar a muy bajo coste silicio rechazado a fabricantes ya existentes. Mediante el uso de las obleas más grandes disponibles, lo que reducía la cantidad de cableado para un área de panel dado, y empaquetándolas en paneles con sus nuevos métodos, en 1973 SPC estaba produciendo paneles a 10 $/Wp y vendiéndolos a 20 $/Wp, disminuyendo el precio de los módulos fotovoltaicos a una quinta parte en sólo dos años.

El mercado de la navegación marítima

SPC comenzó a contactar con las compañías fabricantes de boyas de navegación ofreciéndoles el producto, pero se encontró con una situación curiosa. La principal empresa del sector era Automatic Power, un fabricante de baterías desechables. Al darse cuenta de que las células solares podían comerse parte del negocio y los beneficios que el sector de baterías le producía, Automatic Power compró un prototipo solar de Hoffman Electronicspara terminar arrinconándolo. Al ver que no había interés por parte de Automatic Power, SPC se volvió entonces aTideland Signal, otra compañía suministradora de baterías formada por ex-gerentes de Automatic Power.Tideland presentó en el mercado una boya alimentada mediante energía fotovoltaica y pronto estaba arruinando el negocio de Automatic Power.

El momento no podía ser más adecuado, el rápido aumento en el número de plataformas petrolíferas en alta mar y demás instalaciones de carga produjo un enorme mercado entre las compañías petroleras. Como Tidelandhabía tenido éxito, Automatic Powercomenzó entonces a procurarse su propio suministro de paneles solares fotovoltaicos. Encontraron a Bill Yerkes, de Solar Power International (SPI) enCalifornia, que estaba buscando un mercado donde vender su producto. SPI pronto fue adquirida por uno de sus clientes más importantes, el gigante petrolero ARCO, formando ARCO Solar. La fábrica de ARCO Solar en Camarillo(California) fue la primera dedicada a la construcción de paneles solares, y estuvo en funcionamiento continuo desde su compra por ARCO en 1977 hasta 2011 cuando fue cerrada por la empresa SolarWorld.

Esta situación se combinó con la crisis del petróleo de 1973. Las compañías petroleras disponían ahora de ingentes fondos debido a sus enormes ingresos durante la crisis, pero también eran muy conscientes de que su éxito futuro dependería de alguna otra fuente de energía. En los años siguientes, las grandes compañías petroleras comenzaron la creación de una serie de empresas de energía solar, y fueron durante décadas los mayores productores de paneles solares. Las compañías ARCO, ExxonShellAmoco(más tarde adquirida por BP) y Mobilmantuvieron grandes divisiones solares durante las décadas de 1970 y 1980. Las empresas de tecnología también realizaron importantes inversiones, incluyendo General ElectricMotorola,IBMTyco y RCA.

Perfeccionando la tecnología

En las décadas transcurridas desde los avances de Berman, las mejoras han reducido los costes de producción por debajo de 1 $/Wp, con precios menores de 2 $/Wp para todo el sistema fotovoltaico. El precio del resto de elementos de una instalación fotovoltaica supone ahora un mayor coste que los propios paneles.

A medida que la industria de los semiconductores se desarrolló hacia lingotes cada vez más grandes, los equipos más antiguos quedaron disponibles a precios reducidos. Las células crecieron en tamaño cuando estos equipos antiguos se hicieron disponibles en el mercado excedentario. Los primeros paneles de ARCO Solar se equipaban con células de 2 a 4pulgadas (51 a 100 mm) de diámetro. Los paneles en la década de 1990 y principios de 2000 incorporaban generalmente células de 5 pulgadas (125 mm), y desde el año 2008 casi todos los nuevos paneles utilizan células de 6 pulgadas (150 mm).También la introducción generalizada de los televisores de pantalla plana a finales de la década de 1990 y principios de 2000 llevó a una amplia disponibilidad de grandes láminas devidrio de alta calidad, que se utilizan en la parte frontal de los paneles.

En términos de las propias células, sólo ha habido un cambio importante. Durante la década de 1990, las células de polisilicio se hicieron cada vez más populares.Estas células ofrecen menos eficiencia que aquellas de monosilicio, pero se cultivan en grandes cubas que reducen en gran medida el coste de producción. A mediados de la década de 2000, el polisilicio dominaba en el mercado de paneles de bajo coste.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s